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D Y N A T E C H  

FREE VIBRATIONS OF THE PRESTRESSED TOROIDAL MEMBRANE 

By Atis  A. Liepins 

SUMMARY 

A numerical analysis of the free vibrations of the prestressed circular 
toroidal membrane is presented. Frequency curves and mode shapes a r e  displayed 
and compared with those of the prestressed circular string and those obtained from 
classical ring theory. The effect of prestress on frequencies is shown. 

INTRODUCTION 

W e  a r e  concerned with the natural frequencies and modes of vibrationof aprestressed 
toroidal membrane. Prestress  caused by internal pressure and centrifugal forces 
is considered. The torus is supported in a free - free manner. 

The purpose of this investigation is to demonstrate a numerical procedure 
and to show the nature of the natural frequencies and modes of vibration by numerical 
results. 

SYMBOLS 

an’ bn 

k 

k* 

P 

r 

U 

- 
U 

V 

- 
V 

Fourier coefficients of string modes 

acceleration of gravity 

thickness of membrane and string 

(1 - V T K  

( 1 -k V 2 ) K  

pressure 

(1 - € cos a)/€ 

Fourier coefficient of meridional displacement 

meridional displacement (Figure 1) 

Fourier coefficient of circumferential displacement 

circumferential displacement (Figure 1) 

1 
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W 

- 
W 

Fourier coefficient of normal displacement 

normal displacement (Figure 1) 

. 
A2' A3 r coefficients defined in Appendix A 

F1.  . . F4 

R 

sS 

U 

w 

a! 

E 

e 

K 

h 

functions defined 

Young's modulus 

in Appendix A 

membrane strains 

junctions of distortions 

membrane forces per unit length 

String force 

radius of generating circle of the torus (Figure 1 ) ;  
radius of string 

membrane prestress forces 

string prestress force 

circumferential displacement of string 

normal displacement of string 

position angle (Figure 1)  

ratio of the twg radii of the torus (Figure 1) 

circumferential angle (Figure 1) 

p R/Eh, prestress parameter 
[ ~ R ~ / E E ~  J o 2 , frequencyparameter 

2 P r o 9 r e s s t h r o IC .g h Res  en r c h. 
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V 

P 

@S 

0 

r 
A 

52 

Matrices 

Z 

Z 
- 

Indices 

i 

I 

m 

n 

Poisson's ratio 

material density 

Fourier coefficient of $ a! 

membrane rotations 

string rotation 

circular frequency 

p h( D R)2 /pR c2 

spacing between stations 

speed of rotation of membrane 

3 x 3 matrices 

2 x 2 matrices 

1 x 3 column matrix 

1 x 2 column matrix 

station 

last station 

Fourier index of string vibrations 

Fourier index of membrane vibrations 

3 P r o  g r e  s s t hr0u.q h Res  e nr c 11. 
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FUNDAMENTAL EQUATIONS 

Equations suitable for the analysis of vibrations of prestressed mem- 
branes have been recently derived by Budiansky (Ref. 1). For the circular torus 
these are (refer to Figure 1): 

E qui1 i b r ium 

3 a  
ae +- a,! ( rNae)  + Nae sin a! + rS,! 

c 

2 -  + +,! s i n @  - E cos a /  + pRr (E,! + Ee)- phRw rw = O  
+ ' e  ae e 

L J (3) 

Strain Displacement 

aii + - -  
act 

RE,! - 
(4) 

(5) 

4 P r o g r e s s  thro7cgh Research. 
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- a w  + R@, - - - a a  

- 
- -  a w  + v cos CY -rR@e - ae 

Constitutive Relations 

(11) 
Eh Ee = Ne - V  Na 

(12) 
Eh Eae = ( l + u )  Nae 

The above constitute - -  12 equations for  the 12 unknowns N, N e y  Nae, 
Ea ,  Eo,  Eae, @a, @ and Se describe the state of prestress. 
They a r e  determined %om a separate analysis of the torus subjected to static internal 
pressure and centrifugal loads. An analysis based on the linear membrane theory 
(Ref. 2) gives 

@&, U, v,  andw. S 
Q! 

1 
2 1 - - E  cos a 

1 - E cos CY 
Sa = pR 

= $ pR + ph(51Rr) 2 
se 

Analyses of the torus under internal pressure based upon nonlinear 
theories (Ref. 3 and 4) show that the linear meridional s t ress ,  So,  can be in e r ro r  
by 18% . The significant difference however, between the linear and nonlinear 
s t ress  distributions is confined to a small area of the torus. The e r r o r  in the 
circumferential stress is negligible. Furthermore, the s t resses  according to 
the nonlinear theory depend on deformations. Such deformations are assumed to 
be negligible in the derivation of the fundamental equations (1 - 12). Hence it is 
assumed that the state of prestress determined according to the linear membrane 
theory is adequately accurate for the analysis of the free vibrations. 

5 P r o  g re  s s t h r o u,q h R e  sear c It, 
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When the prestress is given by Equation 13, the solutions of the funda- 

mental equations (1 - 12) are such that either w and v are even, u is odd or  w and v 
are odd, and u is an even function of Q! with respect to Q! = 0 and a! = T .  These two 
groups of solutions will be called symmetric and antisymmetric modes , respectively. 

REDUCTION TO ORDINARY SECOND ORDER 
DIFFERENTIAL EQUATIONS 

The fundamental equations (1 - 12) can be reduced in the usual manner 
to three differential equations in U, 7 ,  and w. However, to obtain a rapid conver- 
gence of the finite difference scheme, described in the following section, we obtain 
three equations in u ,  v ,  and @ as follows. F i r s t ,  expand U, 7 ,  w, and $ inFourier 
series ff 

n =O 

v = R 2 vn (a) s i n n  e 
n=O 

00 

Gn ( a )  cos n 8 c - - 
@a 

n=O 

Next, substitute Equations (4 - 6) and (8 - 14) into Equations (1 - 3) .  The resultant 
equations together with Equation ( 7) constitute four ordinary differential equations 

bun, vn, Wn' n' and @ They are of the form 

(15) 

(16) 

F1 (u", u ' ,  u ,  v',v,W: w, @ = 0 

F2 (u', u ,  v", v ' ,  v ,  w) = 0 

In the above and all subsequent equations, the subscript n on the Fourier coefficients 
has been dropped. Primes indicate differentiation with respect to a. 

6 P r o  Q r e  s s t h ro t~g  h Res  ear cla. 
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Equation (17) can be solved for w in terms of u ,  v ,  and C p :  

&w (19) 
1 1 

= T1 u' + TZU + T 3  v + K  (1 + ZC) $ '  + y K  MS# 

and the first derivative of w can be expressed as 

Qw' = - Q ' w  + F4 (u", u', U ,  v ' ,  V ,  $", + ' ,  @) 

All coefficients in Equations (19 and 20) are defined in Appendix A. 

Now , multiply Equation (15) by Q and eliminate Q w' using Equation (20). 
Then multiply the resultant equation by Q and eliminate Qw using Equation (19). In 
the same way eliminate w' from Equation (18). Finally, multiply Equation (16) by 
Q and eliminate Qw. The resultantthree differential equations for u ,  v ,  and Cp are 
each of the second order. They can be written in matrix form 

where 
z =I} 

The elements of A ,Byand C are defined in Appendix A. 

The basic Equations (21) simplify for several special classes of vibrations. 
In the case of axisymmetric vibrations, n = 0 ,  v = 0 ,  and the second equation of 
E.quations(21) (equilibrium in f3 direction) is satisfied identically. Then, Equations 
(21) becomes 

where 

The elements of A, E,  and 
row and column are deleted. 

are the remaining elements of A: By and C if the second 

Furthermore, if the torus is not prestressed ( K = 0) , c$ can be eliminated 
from Equations(22). The resultant differential equation for u is: 

[A -( 71 A1 u" + A 2 u f  + A 3 u = O  1 - E  cos a 

where A1, A2 , and A3 are given in Appendix A. 
P r o g r e s s  through R e s e a r c h  7 
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In the case of circumferential vibrations, u = w = @ = 0 ,  n = 0 ,  = v ( a ! ) ,  

and the first and third equations of Equation (21) are satisfied identically. 
governing differential equation for v is 

The 

Blv'l + B1v' + B 3 v = 0 (24) 

The coefficients are given in Appendix A. 

NUMERICAL ANALYSIS 

The geometry and prestress are symmetrical about a = 0 and a = T. 
Hence, we need to  consider only onehalf of the torus corresponding to the range 
0 5 a! I T . Let this range be subdivided by I + 1 equally spaced stations. Then the 
spacing between stations is 

A = n/I 

and the position angle for the ith station is 

Q! = iA i = O , 1 , 2  , . . . .  I i 

The differential Equations(21) at the ith station can then be written 

AiZ;' + Biz; + CiZi = 0 i =  0 , 1 , 2  , . . . .  I 

Bi i '  

difference formulas 

aod Ci are those of A, B, and C with a replaced by iA. The elements of A 

The derivatives of z at the ith station are approximated by the central 

With these formulas we obtain from Equation (25) the set of finite difference equations 

+ E.z. + F i Z i -  = 0 DiZ i  + I  1 1  
i =  0 , 1 , 2 , .  . . . I  

where 2 
i A i  i 

D. = - A .  + B 

8 P r  o g  r e s s t hrozcg h Resenr c h 
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E . = - -  / 
A. + 2ACi 

1 A i  

2 F. = - A  - B  
1 A i  i 

The difference Equations (27) a r e  augmented by conditions at i = 0 and 
i = I. These end conditions a r e  obtained from considerations of continuity of the 
displacement functions u,  v ,  and w. They a r e  

where 

= + G Z  1 - 1  zI +1 - 

G = [ -11-1] 
(29) 

Plus and minus signs refer to symmetric and antisymmetric modes respectively. 

The eigenvalues of the set of difference Equations (27) a r e  obtained 
by trial  and error .  Inthis procedure a Gaussian elimination technique is employed, 
applicable to equations with a tridiagonal matrix (Ref. 5). The equations for this 
procedure a r e  obtained a s  follows. Let 

z. = - P. z .  + 1 (30) 1 1 1  

Substitution of the above expression into Equations (27) gives the recurrence relation 

P. = bi - FiPi - 3 -' Di i = 1, 2 ,  3 ,  . . . . . 1 - 1  (31) 
1 

Now, wr i te  the difference Equations (27) at i = 0 and eliminate Z-l using Equations (29). 
The result is 

E O Z O  + [ Do - + F G ]  0 Z 1 = O  

which provides the expression 

P = E  0 0 -  

Equation (32) together with the recurrence relation Equation (31) provides all the 
Finally, write the difference Equations (27) at i = I. Eliminate zi: ;,%:k&ations (29) , and ZI- 1 using Equation (30). The result is 

b1- [FI + D I G ]  pI-l z ] =  I 0 (33) 

P r o  Q r e  s s t hr o u g  h Re search, 9 
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Since ZI 0 , we must require that the determinant 

V = E  - F  + D G  PI 
I I C I -  I ]  - I (34) 

vanish, Equation (34) is effectively a frequency equation. A value of h which gives 
V = 0 is a natural frequency of vibration. 

The mode shape corresponding to a natural frequency can be calculated, 
once a A for which V = 0 and the corresponding P matrices a r e  obtained. 
the amplitude of one of the displacementsat i = I equal to unity and calculate the re-  
maining displacements at i = I from two of the Equations (33). Thus , for the symmetric 
modes 

We set 

(35) 

For  antisymmetric modes 

where 

$ I = -  E31(I) E -(D31(I)+ F31(I)) '11(I-1) +(D32(1)- F32(I) ) '21(I-1) - ( D33(I)+ F33(I))P31(I-1) 
33(I) -?31(I) + F31(I)) '13(1-1) + ( D32(I)-F32(I) ) '23(1-1) - ( D33(I)+ F33(I))P3gI-1) 

The remaining Z's  can then be calculated from Equations (30). 

The w displacement is obtained from Equation (19). In finite difference 
form the equation reads 

L 

1 , 2 , 3 . .  . . . I - 1  i =  

10 P r o g r e  s s t hroicg h Research .  
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The computation procedure is summarized a s  follows : 

1. 

2. 

3. 

4. 

5. 

6. 

Assume a value of A; 

With the assumed A ,  calculate the elements of the A ,  B, 
and C matrices at all stations from equations given in 
Appendix A; 

Calculate the matrices Di, E., F., and Pi from Equations 

Evaluate the determinant V , Equation (34) ; 

Repeat steps 1 - 4 to obtain a plot of V versus A .  
typical plot is shown in Figure 2. 

Calculate the mode shape corresponding to a natural 
frequency from Equations (3O)and (35 - 38). 

1 1  
(28) 9 (31) 9 and (32); 

A 

The equations in this procedure were programmed for the digital computer. 

The numerical analysis of Equations (22 - 24) is similar to that de- 
scribed above for Equation (21). The equations of these analysis were also pro- 
grammed for the digital computer. 

RESULTS AND DISCUSSION 

Natural frequencies and mode shapes for n = 0 ,  1 2 ,  3 and circum- 
ferential vibrations a r e  computed. Prestress due to internal pressure with intensities 
corresponding to K = 0.002, 0.0001, and 0 is considered. The effect of centrifugal 
forces is determined for two specific geometries. 

The frequencies and mode shapes of two limiting cases a r e  of interest 
in the interpretation of the results: 

1. The hollow ring (classical thin ring theory, Reference 6). 

2 .  The prestressed circular string. 

The trringrt frequencies and mode shapes are approximations to the overall deformation 
of the torus wheo E is small. They are shown in Figure 3. The r'strh-gtt frequencies 
and mode shapes a r e  associated with distortions of the cross section. There a r e  two 
families of "string" modes with the following frequencies: 

K m'(m2 - 1) 
2 m +1 

Lower family: A M - 2 
E (39) 

11 P r o  Q r e  s s f h T o ~ ~ g  h Res  ear c 11' 
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These a r e  derived in Appendix B. 

Accordingly, the frequencies of the toroidal membrane are divided 
with a lower family and an upper family of frequencies. 

Lower Family 

The frequencies and eleastic mode shapes for n = 0 , 1, 2 ,  and 3 when 
K = 0.002 a re  displayed in Figures 4 - 9.  The set of three dashed curves on the 
frequency plots represent "string" frequencies. The mode shapes a r e  shown as 
distortions of the cross section due to u and w displacement. The v displacement 
is shown in a separate plot. The complete mode shape is obtained by multiplying 
the u and w displacements by cos n6 and the v displacement by sin ne. 

For  E small, the lowest mode for each type of vibration, exceptn = 1 , 
symmetric, is approximated by a ring mode. In the case of the exception , the 
frequency approaches infinity instead of the trringrr value h = 2 .  The same is true 
for the second mode of the n = 2 symmetric vibration. Here the frequency would 
be expected to approach h = 5. In both instances the corresponding '!ring" modes 
a r e  of the extensional type. An explanation of these exceptions has not been found. 

For E small, frequencies of the higher modes approach the string 
frequencies. 

The most striking feature of the frequency curves is the interaction 
of the f'ringll and "string" modes at approximately the frequencies of the ''ringr1 
modes. The result of the interaction is a drastic decrease in frequency of the 
lowest mode. The decrease in frequency is accompanied by a transition from the 
overall rrringrl to a "string" mode shape associated with deformation of the cross 
section. The effect of the interaction on the higher modes is to increase the com 
plexity of their mode shapes. 

The significant feature of the mode shapes is that they increase in 
complexity with increasing E :  first, through interactions with the "ring"modes 
and, finally, through local deformations of the cross section. Some interaction 
areas  a re  exceptions where the mode shapes resemble those of the "ring" modes. 

The frequency curves for n = 0 ,  2 when K = 0.0001 a r e  displayed in 
Figures 20 - 23.  These figures show that the interactions between rlringtr and 
"string" modes occur at lower values of E than ir, the K = 0.002 case. 
shapes for K = 0.0001 a r e  similar in nature to those f o r  K = 0.002. For this reason 
they a r e  not displayed. 

The mode 

When the membrane is not prestressed ( K  = 0) it has a continuous 
frequency spectrum. The range of the spectrum is 

(41) 
-2 O 5 h  I (1 - E )  

12 P r o  g r e  s s f h r o u g  h R e s  e nr c 12. 
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That i s ,  every frequency in this range is a natural frequency of vibration. The mode 
shapes are discontinuous. As examples, two mode shapes are shown in Figure 24. 

The character of these vibrations is due to the singular nature of the 
governing differential Equation (23). The frequency range Equation (41) is obtained 
from the governing Equation (23) by equating to zero that part of the coefficient of 
u" which is inside the brackets. 

Discontinuous mode shapes are not realistic results. There is evidence 
that a n  analysis of the vibrations based upon a nonlinear membrane theory would yield 
continuous mode shapes. Consider the case h = 0. It corresponds to the static de- 
formation of the torus subjected to internal pressure which approaches zero. In this 
case there are no solutions of the linear membrane equations for which the displace- 
ments are continuous (Ref. 5). Studies based upon nonlinear membrane theories 
(Ref. 4 and 5) show that continuous displacements a r e  possible. 

The dependence on prestress ( K  = 0 excluded) of the frequency of the 
lowest n = 0 ,  symmetric mode is shown in Figure 25. It shows the nonlinear relation 
between frequency and prestress.  The dependence on prestress  of all frequencies 
is such that as the prestress is increased without limit, all frequencies approach 
infinity * 

The modes considered in this section have frequencies of the order of 
magnitude indicated by Equation (39). Hence , they are considered a s  constituents 
of the lower family of frequencies. 

Upper Family 

The upper family frequencies and mode shapes for K = 0 a r e  displayed 
in Figures 26 - 28. These modes a r e  associated with cross  sectional distortions. 
The frequencies are reasonably well approximated by the string frequencies , except 
f o r  the second symmetric mode. This frequency curve can be obtained by setting 
A (a! = T) = 0 ,  see Equation (23). Thus, it is a result of the singular nature of 
Equation (23). 1 

Circumferential Vibrations 

The circumferential vibration frequency curves are displayed in 
Figures 29 and 30, and the mode shapes in Figures 31 and 32. The antisymmetric 
modes are torsional vibrations about the axis of rotation. The symmetric modes 
are nontorsional. 

For  E small, the frequencies of the first symmetric and antisymmetric 
modes are approximated by 

Thus , the circumferential modes are weakly dependent on prestress  . 

13 P r o g r e s s  t hrowg h Research.  
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Rigid Body Modes 

The rigid body modes ( h  = 0) of the torus are: 

1. Displacement parallel to the axis of rotation 
- 
u = cos a! 

- 
w = sin a! 

2 ~ Displacement normal to the axis of rotation 
- 
u = sin a! cos 8 
- 
v = sin 8 

w = cos a! cos e 

3. Rotation about the axis of rotation 

4. Rotation about an axis normal to the axis of rotation 

- 
v = -€sin a! sin 8 
- 
w = - sin a! cos 8 

Examples 

The ten lowest modes of vibration of two specific structures are 
computed as examples. Case I i s  the toroidal membrane idealization of a 150' 
diameter space station (Ref. 7) (E = 1/15, K = 0.001875). 
torus (Ref. 8) ( E = 1/3, K = 0.00476). 
are given in Appendix C. 

Case II is a 24' model 
The pertinent parameters of both cases 

The frequencies are given in Tables I and II. They are compared 
with classical ring frequencies (Ref. 6).  

The mode shapes of both cases are shown in Figures 33 and 34. 

14 
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Effect of Centrifugal Forces 

Prestress due to centrifugal forces arising from spin about the axis of 
rotation was considered for Cases I and II. The speed of the spin was such as to cause 
a lg acceleration at the outer r im of the torus. Such spinning changes the frequencies 
of vibration given in Tables I and 11 by less than one percent. 

CONCLUDING REMARKS 

The results of the numerical analysis show that there a r e  three groups 
of modes of vibration: 

1. Lower family, f o r  which the modes of classical ring theory, 
and those of the prestressed circular string a r e  limiting 
cases; 

2 .  Upperfamily , whose frequencies a r e  reasonably well ap- 
proximated by the upper family of frequencies of the pre- 
stressed circular string ; 

3 .  Circumferential modes. 

The frequencies of the lower family modes depend strongly on the 
intensity of prestress .  The circumferential modes are practically independent of 
prestress .  

The r'ringrr and "string" modes interact causing a decrease in frequency 
that is associated with cross  sectional distortion. 

The study of the upper family modes should be extended to include non- 
axisymmetrical modes of vibration and the effect of prestress .  

ACKNOWLEDGMENT 

The author acknowledges the work of Professor B. Budiansky, whose 
contributions in this investigation were notable. 

15 P r o 9 r e s s t h T o 14 g h R e s e nr c 12. 



D Y N A T E C H  

/ Appendix A 

COEFFICIENTS OF DIFFERENTIAL EQUATIONS 

Define the following quantities: 

k = (1 - V ~ K  

E sin cy 
1 - E cos cy 

1 - E cos cy 

s =  

E cos o! c =  

En 
1 - E cos cy 

M = i + 2 r  ( I - E c o s ~ )  

N =  

2 

k ) 2 k  2 
Q = E (1-v ( C - ( l + y M  C - y M N  

T1 = 1-(v- $)  C 

T2 = S [ v - k - ( 1 .  -$-.).I 

2 ) h - I +  2 v - p  

T3 v - k -  (1+ k M ) C ]  

T4 = l + k - ( v - + ) C  

1 T5 = N k - v + ( l + k ) C  i 
(1 + C) - T4Q' 

The derivatives of M, Q, T1, T2 and T3 are: 

M' = 4 ~ r  (1-E cos a )  sina 
2 2  Q' = [2(1+ %M)C-(2v- F)] S(l+C)+kMN 2 k  S -  y M ' ( N  + C  ) 

T1' = S ( V -  +) ( l+C)  

( l + C ) - - M ' C  2 " 1  
-kM'NC 1 

16 P r o g r e s s  t h r o u g h  Research ,  
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The elements of the A,  B and C matrices are: 

- 
- 

- 
A13 - 

- 
A22 - 

A33 - 

A12 = 

A31 = 

- 

QT1 - 

kQ ( l + k  C )  

A21 = AZ3 - - A32 = 0 

Bll = Q QS 1 + - M  + T4 (Tlf + T2) ] + T1 T6 [ (  2 " )  

1 
- - Q S ( l - v + k M )  B22 - 2 
= k T 5 ( l + Z C )  1 

B23 

B31 = & ( T i f  + T2) - Q'T1 

B21 - - 
T 1 T 5 -  5 1 ( l + v ) Q N  

1 QS (1 - M + C) 2 

= Q2 L v C - S  2 1  - - ( 1 - v ) N 2 -  $ M ( N  2 2  +S ) + E  2 ( 1 - v  + QT4T2' + T2T6 cll 2 

c12 2 = - QNS [ 1 (3 - + m ] t Q T i  T3f + T3 T6 

17 P r o g r e s s  t h ~ o i c g h  Research. 



= T2 T5 -[ + (3-14 + k M  QNS 
c21 1 

1 2 k  2 2 2  
= Q [e2 ( 1 - v  2 ) A - N  - - ( 1 - v )  ( C + S  ) -  z M ( N  +S + C  ) - k C  +T3T5 c22 2 

k 
'23 - 2 - - T 5 M S  

2 
c33 = 

k Q M ( c - s ~ ) + M ~ s  - ~ Q ~ M S + Q  
2 1 

The coefficients of the differential Equation (23) are: 

2 
A1 = E (1-v2)  cj 

A2 = Q2S. + G S  ( 1 - v C )  [ ( v - C ) + v ( l + C ) ]  + 

S ( 1 - v C )  ( l + C )  + 2 ( 1 - v C )  ( v - C )  

1 2 l  A3 = Q [,c-, + E  (1-v ) h  + Q(1-vC) (u-C) (C-s ) + s  (1+C) 
2 2  2 2  

1 
2 

c 2 - + s  (u-C) ( 1 + C )  - 3 + 2 ( 1 - v C )  ( v - C )  

2 2  where = E (1-v ) h -  I t - 2 v C - C  

The coefficients of the differential Equation (24) are: 

B1 = 
1 + k* (2 + C) 

B2 = S ( l  + k * M )  
2 2 2 = 2(1 + v) E h - (C + S2) - k* (MS + MC + 2C) 

B3 

where k* = (1 + v) K 

I 18 P r o  Q r e  s s t h r O I L  ,g h R e s  ear c h  
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Appendix B 

VIBRATION OF THE PRESTRESSED CIRCULAR STRING 

The analysis is based upon the membrane equationsof Ref. (2). For 
the prestressed circular string they are: 

Equilibrium 

N ' + S s  (Es' - +s) + P R + ~  +phRw 2 U = O  
S 

Ns + S s  (Es + - pREs -phRw2 W =  0 

Strain - Displacement 

1 
s R  

1 
s R  

E = - ( U ' + W )  

$I = - ( - W ' +  U) 

Constitutive Relation 

Ns = EhEs 

The prestress is 

S = pR 
S 

Substitution of Equations (B2-B4) into ( B l )  yields 

19 P r o g r e s s  through Research ,  



D Y N A T E C H  7 
The solutions of Equations (B5) are: 

ca 

U = C a  n s i n m a  
n=O 
00 
P 

W = t b  n c o s m a  

n=O 

With this solution, the frequency equation can be obtained from Equations 

(B5) in the usual manner 

The roots of the frequency equation are approximately 

m2 + 1 
2 A =  

E 

where K has been neglected in presence of unity. 

20 
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Appendix C 

STRUCTURAL PARAMETERS 

The structural parameters of Case I (Ref. 7) and Case I1 (Ref. 8, 9) are 

given below: 

R 

R - 
E 

h 

P 
E 

V 

Pg 

K 

E 

r 

Case I 

75' - - 

0.032" 

10 psi 

107 psi 

0.3 
3 0 . 1  #/in - - 

- - p R =  
Eh 0.001875 

- - phR2'2 0 = 0.00450 

Case I1 

8' 

24' 

0. 080" 

7 psi 

1.763 x 10 psi 

0 

0.0217 #/in3 

0.00476 

6 

1/3 

0.000558 

Wall thickness of Case I is based on a yield stress of 65,000 psi and a design 

pressure of 30 psi. Young's Modulus of Case I1 is for individual chords of the 

filament cage. Q produces a lg acceleration at the outer r im. 

21 P r o g r e s s  throicgh Research,  
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Mode 

Number __ 

Table I Frequencies of Case I 

-- 
QPe 

Fourier 
Index 

- -I____-.- .- ___ - 

2 

3 

I l I 2  1 Antisymmetric 

2 ' Symmetric 

3 

5 ) 4  
! 

i 
6 1 4  

0 i 7 :  

Antisymmetric 

Symmetric 

Antisymmetric 

Symmetric 

Antisymmetric 

Antisymmetric 

Symmetric 

Antisymmetric 

--- 
Frequency 

c p s - - _  - ._ 

3.67 

3.77 

10.07 

10.13 

18.4 

18.5 

19.5 

27.5 

27.6 

27.7 
___- 

Table I1 Frequencies of Case I1 

~ 

Frequency 
CPS Type 

Fourier 
Index 

.... __ - ___I_.I_ ____ 
0 Antisymmetric 2.63 

2 Antisymmetric 2.70 

2 Symmetric 2.97 

Symmetric 5.11 

4 3 Antisymmetric 5.03 

Symmetric 6.720 

7 4 Antisymmetric 6.722 

,i 
, i 1 Antisymmetric 7.85 

Antisymmetric 7.86 

Symmetric 7.87 

Ring Frequency 
_._- c p s  

4.27 

4.39 

12.2 

12.4 

23.6 

23.8 

24.6 

38.3 

38.5 

32.7 

_ _  .. .. -- 
Ring Frequency 

CPS I 

6.92 

6.01 

6.19 

17.2 

17.5 

33.3 

33.6 

La P r o  g r e  s s t h r o ~ . q  h R e s  ear c 1%. 
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